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2 | Background and Motivation

*Chatter refers to an abrupt increase in electrical resistance
across a contact when subjected to shock or vibrations.

* Can be detrimental to signal transmission if frequent enough,
or long enough duration.

* The purpose of this project is to understand what causes
chatter, and when it occurs.

*Previous NOMAD projects have focused on chatter
before, but further research still needs to be conducted.
* Originally, the end goal of the project was to characterize

chatter in oil, but the project pivoted to focus on gaining a
better understanding of the system in ait.
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3

Pin and Receptacle Fixture

*Fixture designed to enable more rigorous characterization of
chatter.

*Pin and receptacle housings are locked into the fixture via
retaining rings.

*Windows allow for non-contacting measurements of the pin
and receptacle.

*National Instruments myRIO used to detect chatter in the
pin/receptacle.

* 120 Ohm resistance threshold for chatter detection.

* 40 MHz sampling rate to detect short-duration events.
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Initial Setup

*Fixture bolted to a large base plate.
*Excitation applied to base plate via a 25 Ibf modal shaker.

*Base plate supported by a gel base to mimic a slip table.

*Six accelerometers mounted to fixture to estimate
boundary conditions for pin and receptacle.

* The fixture has its own modes that may affect the amplitude
and phase at the base of the pin and receptacle.

*Three laser doppler vibrometers (LDVs) for non-

contacting measurement pin and receptacle velocities.

*Lasers positioned on both sides of the fixture.

LDV




5 | Fixture Modes

*Using Cubit, Sierra, and Ensight a few modes of the fixture were predicted

Mode 1: 2434.41 Hz

Mode 2: 3570.21 Hz

Mode 3: 3581.62 Hz

Mode 4: 3966.02 Hz

Mode 5: 4012.23 Hz

Mode 6: 4179.14 Hz )



s I Luke, Brandon, and the Quest for Chatter
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*Shaker/amplifier combination only able to achieve full force
rating up to about 1400 Hz. Sharp decrease in achievable
force after that point.

* Around 2 g's of base excitation below 1400 Hz.
* 1 gat 3000 Hz.
* 0.3 g's at 5000 Hz.
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*Likely candidate for first mode of the pin/receptacle pair in
the vicinity of 7000 Hz. Lover Recepiace

*With this acceleration profile we were not able to achieve
chatter.
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7 ‘ The Final Setup

*Base plate removed to reduce mass and enable larger
acceleration at pin and receptacle.

*Final configuration had the fixture suspended from a T-slot
frame via Kevlar strings.

* Excitation applied at the top of the fixture results in pendulum
motion.

* Different acceleration at pin and receptacle.

* Excitation applied through the center of mass results in
translational motion.

* Same acceleration at pin and receptacle.

*Necessitated moving all three LDV to the same side.

* Some error likely introduced due to proximity of beams.




s I A Change to Induce Chatter

*Ultimately, we were unable to induce chatter with rigid boundary
conditions for both the pin and receptacle.

*Chatter is achievable if the pin holder is left uncompressed.

* Pin essentially floating inside the fixture. Able to move vertically
and rotate slightly. Limited by the geometry of the fixture.

* The boundary conditions are worse posed, but this is a compromise for
achieving chatter with a smaller shaker.
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‘ Experimental Results — LDV Measurements of Chatter

At low excitation levels chatter occurs
reliably and periodically. 40

30

*  Separation and impact results in sudden 20

changes in velocity. Easily detectable 10

with the LLDVs.
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chatter exhibits chaotic behavior.
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*  Duration and positioning in the
waveform essentially random
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10 ‘ Experimental Result — Energy Transfer During Chatter

* Average signal power increases in both the pin and
receptacle in the cycle following a chatter event. Two
posstbilities

* Potential energy in the pin/receptacle contact released
as kinetic energy.

* Impact between the pin holder and the fixture.

* Seems unlikely because that should happen every cycle.

Velocity (mm/s)

Average Signal Power

60

40

20

-20

Velocity (mm/s)

-40

Average Signal Power

Receptacle Response

L 1 1 1 | | |
4125 41.255 41.26 41.265 41.27 41.275 41.28 41.985
10
1
I 1 1 | | I 1
41,25 41.255 41.26 41,265 41.27 41.275 41,28 41.285 41.29 41,295
Time (ms)
Pin Response
T T T T T T 1
10.9
0.8
r 07
06
2
—105 ®
£
i i
J W
0.3
0.2 I
0.1
1 1 1 | | | | | 1
4125 41.255 41.26 41.265 41.27 41.275 41.28 41.285 4129 41.295
10
———
—_——
] —_—
—_—
— — | ——— ! ] | 1
41,25 41.255 41.26 41,265 41.27 41.275 41,28 41.285 41.29 41,295
Time (ms)



11 ‘ Experimental Results — Statistical View
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* Chatter events are initially short duration.
* Average chatter duration initially shows a rapidly increases with force.
* Duration decouples from applied force at approximately 40 N in this
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2 ‘ Experimental Results — Maximum Chatter Frequency

Chatter Events
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13 I Modeling (In Progress)

*Simplified model has the receptacle clamped and y Receptacle —
the pin positioned on a rotational spring support. % S S Rotational Spring
- i . Contact
* Bi-linear penalty spring between receptacle and pin at Penalty Spring \ /
contact point. A
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¢ Activates when receptacle and pin overlap. Zero otherwise. Pin Pin Holder

* Bi-linear rotational spring at the pin base.

¢ Allows free rotation within a range.
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14 ‘ Conclusions & Future Work

*Excite and understand chatter more in depth in air.
* Use a larger shaker to induce chatter in a fully tightened assembly.
* May also be able detect smaller-scale chatter events by reducing resistance threshold in chatter detector.

* Characterize chatter across a wide band of frequencies.

*Test the fixture while filled with oil
* Understand how oil affects response of system.

¢ Oil likely to increase the damping of the system, but also introduces hydrostatic load on pin/receptacle.

*Further develop models to predict system behavior and chatter
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